отработавший пар - translation to γαλλικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

отработавший пар - translation to γαλλικά

ПАР, ДАВЛЕНИЕ КОТОРОГО ПРЕВЫШАЕТ ДАВЛЕНИЕ НАСЫЩЕННОГО ПАРА
Перенасыщенный пар; Переохлаждённый пар
  • метастабильные состояния]].<br> <br>
Участок правее точки G — обычный пар. <br>
Участок GC — ''пересыщенный пар''.<br>
Прямая GF — обычный переход пар↔жидкость, динамическое равновесие между жидкостью и насыщенным паром.<br>
Участок FA — [[перегретая жидкость]].<br>
Участок левее точки F — нормальная жидкость.

отработавший пар      
vapeur de décharge
vapeur de sortie      
- отработавший пар, мятый пар
vapeur détendue      
- отработавший пар

Ορισμός

Пар водяной

газообразное состояние воды. П. в. получают в процессе парообразования (испарения (См. Испарение)) при нагревании воды в паровых котлах, испарителях и других теплообменных аппаратах. П. в. служит рабочим телом в паросиловых установках (См. Паросиловая установка), теплоносителем в системах вентиляции, тепло- и водоснабжения; используется также в технологических целях. Если при давлении, равном 101,325 кн/м3 (760 мм рт. ст.), воду нагреть до 100 °С, то она закипает (см. Кипение) - начинает образовываться пар, имеющий ту же температуру, но существенно больший объём. До тех пор пока остаётся некоторое количество воды, температура системы, несмотря на непрекращающийся подвод теплоты, постоянна. Состояние, при котором вода и пар находятся в равновесии, называется состоянием насыщения (см. Насыщенный пар), характеризующегося давлением насыщения и температурой насыщения. Только после превращения всей воды в пар, объём которого при 100 °С в 1673 раза больше объёма воды при 4 °С, температура может начать вновь повышаться. При этом пар из насыщенного переходит в перегретое состояние (см. Перегретый пар). Если процесс испарения проводить при различных давлениях, то температура испарения меняется в зависимости от давления (см. таблицу).

Зависимость температуры и плотности воды и пара, находящихся в состоянии насыщения, от давления насыщенного пара

------------------------------------------------------------------------------------------------

| Давление пара, | Темпера- | Плотность, |

| Мн/м2 (кгс/см2) | тура,°С | кг/м3 |

| | |---------------------------------|

| | | вода | пар |

|-----------------------------------------------------------------------------------------------|

| 0,101 | (1) | 99,1 | 959 | 0,58 |

|-----------------------------------------------------------------------------------------------|

| 1,01 | (10) | 179 | 887,9 | 5,05 |

|-----------------------------------------------------------------------------------------------|

| 10,1 | (100) | 309,5 | 691,9 | 54,2 |

|-----------------------------------------------------------------------------------------------|

| 22,3 | (220) | 372,1 | 420 | 229 |

------------------------------------------------------------------------------------------------

Теплоту, затраченную на нагревание 1 кг воды от 0 °С до температуры насыщения, называют энтальпией воды, а теплоту, затраченную на превращение 1 кг воды с температурой насыщения в сухой насыщенный пар,- теплотой парообразования (испарения). При давлении, равном критическому (см. Критическое состояние), теплота парообразования равна 0, а если проводить нагрев при более высоких давлениях, то при подводе теплоты происходит непрерывное изменение температуры, сопровождающееся непрерывным приращением объёма без разделения вещества на жидкую и газообразную фазу. Такой подогрев П. в. при давлениях выше критического [критические параметры воды: давление 22,1 Мн/м2 (225,65 кгс/см2), температура 374,15 °С, плотность 303 кг/м3] иногда осуществляется в паровых котлах. В паровых машинах и турбинах применяется, как правило, не насыщенный, а перегретый пар, так как кпд машин, работающих перегретым паром (иногда его называют острым паром), выше. В СССР и за рубежом в мощных паросиловых установках применяется П. в. с давлением 25 Мн/м2 (255 кгс/см2) и температурой 545 °С. Для целей нагревания (например, отопительных приборов) экономически оправдано использование насыщенного П. в., так как коэффициент теплоотдачи от конденсирующегося насыщенного П. в. значительно больше, чем от перегретого. Изучение свойств П. в. началось в 16-17 вв. В начале 17 в. в работах итальянского учёного Дж. делла Порта исследовался удельный объём П. в., тогда же французским учёным С. де Ко были рассмотрены вопросы конденсации пара. В конце 18 в. были исследованы отдельные свойства П. в.: зависимость температуры парообразования от давления (Д. Папен), теплота парообразования (Дж. Блэк, Дж. Уатт), удельный объём пара при давлении 0,1 Мн/м2 (Дж. Уатт). Изучение свойств пара как рабочего тела паровых машин было начато в 40-х гг. 19 в. французским учёным А. В. Реньо. В 1904 немецкий учёный Р. Молье предложил i - s диаграмму состояния П. в. В России в 19 в. над изучением свойств П. в. работали учёные Л. Г. Богаевский, Б. Б. Голицын, А. И. Надеждин и др. В СССР И. И. Новиковым было выведено теоретическое уравнение состояния перегретого пара (реального газа). Широкие экспериментальные исследования термодинамических и физических свойств воды и П. в. проводили профессор М. П. Вукалович, профессор Н. Б. Варгафтик, академик В. А. Кириллин, профессор Д. Л. Тимрот и др. На основании исследований советских учёных в СССР составлены таблицы и диаграммы термодинамических свойств воды и П. в. при давлениях до 100 Мн/м2 и температурах до 1000 °С. В 1963 в Нью-Йорке (США) на 4-й Международной конференции по свойствам водяного пара были приняты международные скелетные таблицы свойств П. в.

Лит.: Вукалович М. П., Новиков И. И., Техническая термодинамика, 4 изд., М., 1968; Кириллин В. А., Сычев В. В., Шейндлин А. Е., Техническая термодинамика, М., 1968; Вукалович М. П., Таблицы термодинамических свойств воды и водяного пара, 7 изд., М.- Л., 1963; Вукалович М. П., Ривкин С. Л., Александров А. А., Таблицы теплофизических свойств воды и водяного пара, М., 1969.

Βικιπαίδεια

Пересыщенный пар

Пересы́щенный пар — пар, давление которого превышает давление насыщенного пара при данной температуре, является метастабильным термодинамическим состоянием. Может быть получен путём увеличения давления пара в объёме, свободном от центров конденсации (пылинок, ионов, капелек жидкости малых размеров и т. д.). Другой способ получения — охлаждение насыщенного пара при тех же условиях. В связи с последним способом получения насыщенного пара применительно к нему используется также наименование переохлаждённый пар. Кроме того, иногда в литературе встречается термин перенасыщенный пар.

Состояние пересыщенного пара является метастабильным, то есть такое состояние пара способно существовать длительное время, однако оно является термодинамически неустойчивым. Так, при появлении каких-либо центров конденсации часть пара конденсируется, давление оставшегося пара падает, и он переходит в устойчивое состояние насыщенного пара над сконденсировшейся жидкостью. Устанавливается динамическое равновесие между жидкой и газообразной фазами.

Также термодинамически неустойчивыми, метастабильными состояниями являются перегретая, растянутая и переохлаждённая жидкости, неустойчивые для лавинной кристаллизации при температуре ниже равновесной растворимости или температуры плавления, это перенасыщенные растворы, переохлаждённые расплавы. Перегретая жидкость вскипает при образовании центров парообразования.

Метастабильные состояния наблюдаются не только при фазовых переходах газ-жидкость, жидкость-кристалл, но и при других фазовых переходах состояния вещества, например, изменении кристаллической структуры. Так, углерод в виде аллотропической модификации в виде алмаза при нормальных условиях термодинамически неустойчив и находится в метастабильном состоянии, постепенно превращаясь в графит — при этих условиях в устойчивую фазу. Другой пример — превращение белого олова в серое олово при низких температурах.

Неизвестны метастабильные состояния при плавлении кристаллических твёрдых тел.